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The t he rm a l  conductivity of 15 organic  compounds near  the melt ing phase  change t e m p e r a t u r e  
is studied exper imenta l ly .  An evaluation of the var ia t ion  in the rma l  conductivity accompany-  
ing these  phase  changes is conducted. 

During phase  changes the kinetic coefficients  of a substance,  among them the t h e r m a l  conductivity, 
change s imul taneous ly  with the var ia t ion  in its s t ruc tu ra l  p a r a m e t e r s .  A compar i son  of the t he rma l  con- 
duct ivi ty of the same  substance in the liquid and solid s ta tes  nea r  the melt ing t e m p e r a t u r e  is of definite 
in teres t .  F o r  this r e a s o n  m e a s u r e m e n t s  of the the rmal -conduc t iv i ty  coeff icients  of 15 organic  subs tances  
were  conducted in the regions  of the melt ing t e m p e r a t u r e s  and the phase  change t e m p e r a t u r e s .  The method 
of the m e a s u r e m e n t s  is descr ibed  in [1]. The r e su l t s  of the exper iment  a re  p resen ted  in Table 1 and a re  
pa r t i a l l y  published in [1-4]. Also in Table 1 data obtained by Fi l ippov [5] a r e  p resen ted  (marked by an 
as te r i sk ) .  An inc rease  in the the rma l  conductivity took place  during c rys ta l l i za t ion  in all cases .  Near  the 
t rans i t ion  points the t he rm a l  conductivity of the l o w - t e m p e r a t u r e  modif icat ions of the compounds studied 
was higher  than that  of the h i g h - t e m p e r a t u r e  phases .  In a number  of subs tances ,  such as acetone and 
n-hexane,  the t h e r m a l  conductivity in the solid s ta te  near  the melt ing t e m p e r a t u r e  depended cons iderably  
on the r a t e  of f reez ing  of the melt .  Rapid f reez ing  produced a phase  having a higher t he rma l  conductivity 
than Mow freez ing .  An analogous effect  was noted in s t ea r i e  acid [5]. Evidently, in acetone the mel t  has 
a compl ica ted  s t ruc tu re ,  as indicated by an anomalous  hump on the curve of the t e m p e r a t u r e  dependence of 

TABLE 1. 
Changes 

Jumps  in The rma l  Conductivity during Melting Phase  

Substance r m, ~ rtr ,~ A m at r p~ +p~8 ply3 

250,2 
278,5 
279,5 
298,3 
178 
247 
219 
286 
228 
177,8 
263 
237 
283 
235 
176,5 
342 
359 
314 

225,8 

186,1 
244,6 

1,2 
1,6 
1,07 
t ,03 
1,4 
1,6 
1,6 
1,3 ,45 
11,7(2,l) 

,55 
,15 1,5 

i1,15 
,1 (1,35) 

1,35 (1,85) 
,6 

1,02 

m 

m 

1,1 

2; 
1,2 

1,2 2 
2,7 
1,4 2~ 
1,2  2,8 
3,0 
4,6 
4,6 
7,2 
3,7 
12(9,5) 

43,a 
3,3 (2,7) 

545 (400) I 

Tetrachloromethane 
B e n z e n e  

Cyclohexane 
Cyclohexanol 
Toiuene 
o-Xylene 
m-Xviene 
n-Xylene 
Mesitelene 
n-Hexane 
n-Butyric acid 
1,2 -Dich Ioroethane 
1,2-Dibromoethane 
Thiopnene 
A ca t on e, 
Stearie acid * 
n-Dibromobenzene * 
Phenol * 

2,2 

3,3 
3.3 

Note: A m -= (k s/Xi)Tm; Atr ~ (kIIxII)Ttr- The factor + ptr is calculated from Eq. 

(2); ~ I/s is calculated from Eq. (3). 
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Fig.  1�9 T e m p e r a t u r e  dependence of t he r -  
mal  conductivity of acetone: do t -dash  
line: melt ing t empera tu re ;  1) liquid 
phase;  2) phase  obtained by rapid c r y s -  
ta l l izat ion of the melt ;  3) slow c rys t a l l i -  
zation of the melt�9 X, {cal. c m .  sec /deg)  
�9 10-4;  T,  ~ 

the t he rma l  conductivity of this compound shown in Fig. 1. 
The the rma l  conductivity of liquid acetone f r o m  melt ing to 
room t e m p e r a t u r e  is shown in Fig. 1 for  c l a r i t y .  The t h e r -  
mal  conductivity max imum in the region of 190~ c o r r e -  
sponds to a min imum on the Cp(T) curve  and, according to 
[6], is explained by the quas ic rys ta l l in i ty  of the s t ruc tu re  of 
the liquid near  T m. It can be a s sumed  that rapid cooling of 
the mel t  led to a f reez ing  of this s t ruc tu re ,  as a consequence 
of which the solid phase  obtained in this way has a higher 
t he rma l  conductivity than that  which is fo rmed  as a resu l t  of 
slow crys ta l l iza t ion .  In Table 1 the data in pa ren theses  
r e f e r s  to the phase  obtained by rapid crys ta l l iza t ion .  One 
should also point out the dependence of the t he rma l  conduct -  
ivi ty of the solid and liquid phases  on the pur i ty  of the s t a r t -  
ing ma te r i a l  in the region immedia te ly  adjoining the melt ing 
t empe ra tu r e ,  because  of the fo rmat ion  of a double l ayer  of 

the solid and liquid phases .  The c i r cums tance  mentioned can lead to the appearance  of a fa l se  t he rma l  
conductivity min imum [7, 8]. The re fo re  we a re  inclined to t r ea t  as anomalous the t he rma l  r e s i s t ance  
(negative the rma l  conductivity values) nea r  T m noted ea r l i e r  in 1,2-dichloroethane [3]. 

The quasi lat t ice model of the mel t  adopted in [9] will be used for  an analysis  of the magnitude of the 
jumps in t h e r m a l  conductivity during melt ing phase  changes.  Fo r  solid bodies,  when all the osc i l l a to ry  
modes a re  excited, k s ~ CVsVs/s, while in the case  of liquids k l ~ CV/vl  l .  Uncomplicated ana lyses ,  based 
for  solid bodies on the L e i b f r i e d -  Schleman equation and Lindeman ' s  rule  [10], and for  liquids on the equa- 
t ion p resen ted  in [9], lead to a re la t ion  between the lengths l s and l l ,  depending only on the anharmonic  
nature  of the solid phase  and valid near  the melt ing t empe ra tu r e :  

= - - .  (1) 
T m T 2 

Equation (1) signifies the upper  l imit  of the ra t io  of l s and l l ,  since the L e i b f r i e d - S c h l e m a n  equation r e f e r s  
to comple te ly  pure  monoatomic  bodies,  while the highest  numer ica l  constant,  equal to 120, obtained exper i -  
menta l ly  for f ace -cen t e r ed  metal  la t t ices  [11] was applied in using the Lindeman rule.  In other words,  the 
ra t io  (1) r e f e r s  to the highest of the exper imenta l ly  de te rmined  evaluations of the path  length l s at Tm. As 
for  the lower l imit  of the ra t io  l s / l  l , it is evident that it cannot be less  than one. In molecu la r  solid bodies,  
in addition to three-phonon p r o c e s s e s ,  one should a lso  consider  anha rmoni sm of a higher o rder  and s c a t t e r -  
ing caused by rotat ion of molecules  or  molecu la r  rad ica l s  [1]. All these fac tors  fu r the r  d e c r e a s e  the path 
length, which near  T m is c lose to the in te rmolecu la r  dis tance.  It can t he re fo re  be considered that the 
jump in t he rma l  conductivity at the melt ing point is mainly  connected with a change in the effect ive r a t e  of 
propagat ion  of osci l la t ions,  s ince at Tin, CV/~  CVs [11]. As a resul t ,  (~s/X/)Tm is propor t ional  to the 

v s / V  1/3 and e l ~ Vl/V~i'3,  and not to the ra t io  of the ra t io  Of the corresponding l imit ing f requencies  w s ~ 

cubes of these f requencies ,  as given in Keyes '  a r t ic le  [12]. Equating the f ree  energ ies  of the solid body 
and the liquid at the melt ing point, we have 

-~t rm ~ "~ P-~exp 3KB CO l Tm " (2) 

Here  pl/3 is introduced in o rder  to allow for  the difference in the degree  of order ing  of the two phases ,  
s ince the entropy of melt ing of molecu la r  substances  has not only an osc i l l a to ry  but also a la rge  configu- 
ra t ional  component:  Scon = K Blnp .  The la t te r  in the s imples t  case  of monoatomic  bodies has the meaning 
of the so -ca l l ed  "col lec t ive  entropy" [13]. 

It can be considered that the re la t ion  (2) it a lso applicable to the ease  of mechanical  melt ing (accord-  
ing to Ubel lode 's  t e rminology  [11]), i . e . ,  to convers ion  in the solid s ta te  f rom the c rys ta l l ine  phase  I to 
the s t rongly  amorphic  p las t ic  phase  H, if it is a s sumed  that l I ~ /II at the melt ing point. On the other hand, 
if this assumpt ion  is not sa t is f ied and the path length of the osci l la t ions of the c rys t a l  l I ~ T -1 becomes  
close to that  in the mel t  only at the t e m p e r a t u r e  of the final breakdown of long- range  o rde r  (true melting),  
then ( l I / l  I I ) T t r  ~ T m / T t r "  The re fo re  the ra t io  of the corresponding coefficients of t he rma l  conductivity 

h I and X H at the t e m p e r a t u r e  of the phase  t rans i t ion  
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' ~'< 1 Tm exp [' Str /. (3) 

Evidently Keyes' approximation is valid only for the transition from the one crystalline phase I to the other 
~ ~I/2 [14], true crystalline phase II. In this ease, taking into account that the limiting frequency is w s ~'sb 

~ -  ~ �9 (4) 
~tr ,/:%b--H,:r 

The functions (2) and (3) are  used in the p resen t  ar t ic le  to evaluate p, the degree  of configurational 
changes during melting phase t ransi t ions,  drawing on the resu l t s  of the experiment  on the re la t ive  jumps 

and (XI/x!I)Ttr ,  as well as data on the entropies of melting and transi t ions [13]. It must  be (Xs/Xl)T m 

pointed out that Eq. (2) gives a lower estimate of the parameters p in accordance with the assumption, in 
place of (i), that I s and I l are close in value. It is seen from Table 1 that there is a correlation between 
the magnitude of the parameter p and the number of possible conformational changes during melting, i.e., 
the complexity of the structure and the number of free components of the molecule. For substances com- 
posed of globular molecules, such as tetrachloromethane, cyclohexane, and cyclohexanol, the values of p 
obtained are close to the theoretical values, ff the rule of "collective entropy" is taken into account, i.e., 
if one sets p = e. In transitions connected with orientation melting for tetrahedric molecules, according 
to [13], p = I0, which is close to the value calculated from the experimental data by Eq. (2). As should be 
expected, the factor p increases in the case of crystals composed of monoatomic molecules, in which a 
considerable part of the heat of melting is expended in conformational changes. 

ks, kl 
k I, X II 

T m 

Ttr  
Sm 
Str 
co s , co l 
Hsb 
Htr  
P 
CV s, CV/ 

Cp(T) 

VS, VZ 
/S, ll 
1 I, l II 

V0/, V0 
T 
KB 

N O T A T I O N  

are  the coefficients of thermal  conductivity of the solid and liquid phases;  

a re  the coefficients of thermal  conductivity of low- tempera tu re  and h igh- tempera tu re  c r y s -  
tall ine modifications,  respect ively .  
is the melting tempera ture ;  
is the t empera tu re  of phase t ransi t ion;  
is the entropy of melting; 
is the ent ropy of phase t ransi t ion;  
a re  the limiting osci l lat ion f requencies  of molecules  in solid and liquid phases ,  respect ively;  
is the heat of sublimation; 
is the heat of t ransi t ion;  
is the order ing factor ;  
a re  the heat capacity at constant volume for  solid and liquid states;  

is the t empe ra tu r e  dependence of the heat capacity at constant p r e s su re ;  
are  the propagat ion ra tes  of oscil lat ions in solid and liquid states;  
a re  the f r ee  path lengths of oscil lat ions for  solid and liquid states;  

a re  the f r ee  path lengths of oscil lat ions for  low- tempera ture  and h igh- tempera ture  crys ta l l ine  
modifications,  respect ively;  
a re  the molar  volumes in liquid and solid states;  
is the Gruneizen constant; 
is the Boltzman constant. 
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